

HEIG-VD IICT | Dr. Marcel Graf, Bruno Brito Carvalho

Building a private cloud with OpenStack

OpenStack Introduction

- Software for creating private and public clouds (Infrastructure-asa-Service), released as Open Source (Apache license)
 - Initiated by Rackspace and NASA in 2010
 - NASA contributes compute platform Nebula
 - Rackspace contributes storage platform Cloud Files
 - Today OpenStack Foundation is supported by >500 companies
 - Current Platinum members:
 - AT&T
 - Canonical (Ubuntu Linux)
 - HP Enterprise
 - IBM
 - Intel
 - Rackspace
 - Red Hat
 - SUSE
 - OpenStack is the Linux of cloud computing."

OpenStack History

- 2010-07 Rackspace and NASA launch OpenStack Open Source cloud software initiative
- 2010-11 first release, Austin
- 2011-04 Canonical starts to distribute
 OpenStack in Ubuntu 11.04
- 2012-04 Rackspace starts offering public cloud service based on OpenStack
- 2012-09 OpenStack Foundation is launched as an independent body

- 2012-12 HP Enterprise starts offering public cloud service based on OpenStack
- 2013-03 IBM/Softlayer start offering public cloud service based on OpenStack
- 2013-07 Red Hat starts to offer commercial support for OpenStack
- 2014-09 Oracle starts to distribute
 OpenStack in Oracle Linux

OpenStack and the competition

OpenStack vs. OpenNebula vs. Eucalyptus vs. CloudStack

Top 10 contributing orgs for **OpenStack** in 2015Q1 by email domain

9.6% gmail.com

- 7.3% redhat.com
- 5.0% ibm.com
- 4.7% mirantis.com
- 4.6% hp.com
- 1.6% rackspace.com
- 1.4% intel.com
- 1.2% yahoo-inc.com
- 1.1% doughellmann.com
- 0.8% cisco.com

Source: Qingye Jiang, Open Source laaS Community Analysis, http://www.qyjohn.net/?p=3801

OpenStack Deployment options

- Deploy your own private cloud
 - Many options available from doit-yourself to remotely operated

Use a public cloud

- Rackspace Public Cloud (since 2012-04)
- HP Enterprise (since 2012-12)
- IBM/Softlayer (since 2013-03)
- and many others
- Open Source nature of OpenStack avoids vendor lock-in!

Private cloud deployment options

Client has responsibility / control

Service provider has responsibility / control

OpenStack Users

- Among the most notable users of OpenStack
 - AT&T
 - Bloomberg
 - CERN
 - Cisco Webex
 - Disney
 - Fidelity
 - Swisscom
 - Walmart

OpenStack Main components

- OpenStack components are developed in their own sub-projects called *programs*
 - Compute Nova
 - Storage
 - Object storage Swift
 - Block storage Cinder

- Networking Neutron
- Dashboard Horizon
- Identity (authentication and authorization) Keystone

OpenStack Integrated programs and incubation programs

OpenStack Not all projects are created equal

What is your **most** favorite OpenStack project?

What is your least favorite OpenStack project?

OpenStack / Amazon Web Services translation chart

Generic term	OpenStack term	AWS term
Compute service	Nova	EC2 (includes compute service)
Object storage	Swift	S3
Block storage	Cinder	Elastic Block Store (EBS)
Image service	Glance	Amazon Machine Image (AMI)
Virtual machine	Instance	Instance
Virtual disk	Volume	Volume
Firewall configuration	Security group	Security group
Fixed IP address	Floating IP address	Elastic IP address

OpenStack Compute – Nova

- Manages virtual machines in compute servers
 - Receives requests from users
 - Creates / starts / stops / releases virtual machines
 - Determines on which server to create a VM requested by a user (scheduling)

- Relies on hypervisors to implement the virtual machines
 - Can make use of KVM, Xen, ESX, Hyper-V, …

Source: Dell, http://en.community.dell.com/techcenter/b/techcenter/archive/2011/06/01/virtualizing-approaches-for-openstack-nova-looking-at-the-many-ways-to-skin-the-cactus-kvm-v-xenserver-v-esx.aspx

OpenStack Block Storage – Cinder

- Service for offering virtual disks (volumes) that can be attached to virtual machines.
 - The operating system in the VM sees a block device and puts a file system on it.
- Functions:
 - Create volume
 - Create volume from snapshot
 - Create volume from VM image
 - Save volume in VM image
 - Attach / detach volume to / from VM
 - Create / delete snapshot
- Can use different storage technologies underneath
 - Local disks
 - SAN (Fiber Channel, iSCSI)
 - NAS (NFS, CIFS)

Source: Rackspace, http://www.rackspace.com/knowledge_center/article/implementing-openstack-cinder-with-emc-storage-on-the-rackspace-private-cloud-software

OpenStack Object Storage – Swift

- Service for storing "objects"
 - Files without structure
 - Directories are not files
- Distributed architecture
 - Deployed on a cluster of servers
 - Three server roles
 - Proxy server: Receives user requests and coordinates storage servers.
 - Storage servers: Offer disk space. Three types of storage servers:
 - Account server: Stores user accounts
 - Container server: Stores containers
 - Object server: Stores objects
 - Consistency server: Responsible for looking for and finding errors (hardware or software failures) and correcting them.

Source: Creationline http://www.creationline.com/lab/772

OpenStack Logical deployment topology

OpenStack architecture Beginning (2011)

Source: Ken Pepple, http://ken.pepple.info/openstack/2011/04/22/openstack-nova-architecture/

OpenStack architecture Two years later (2013)

Source: OpenStack Grizzly logical architecture

OpenStack architecture Today (2016)

Source: OpenStack Liberty logical architecture, http://docs.openstack.org/admin-guide-cloud/common/get_started_logical_architecture.html

OpenStack Release schedule

- OpenStack is developed and released around 6-month cycles.
 - Every 6 months a new release
 - Each release gets security updates for only 12 months, then it is declared end-of-life
- Much shorter support timespan than Linux distributions (3 - 10 years).
 Hard to keep up!

Series	Status
<u>Ocata</u>	Future
<u>Newton</u>	Future
<u>Mitaka</u>	<u>Under Development</u>
<u>Liberty</u>	Current stable release, security- supported (EOL: 2016-11-17)
<u>Kilo</u>	Security-supported (EOL: 2016-05- 02)
<u>Juno</u>	EOL: 2015-12-07
<u>Icehouse</u>	EOL: 2015-07-02
<u>Havana</u>	EOL: 2014-09-30
<u>Grizzly</u>	EOL: 2014-03-29
<u>Folsom</u>	EOL: 2013-11-19
<u>Essex</u>	EOL: 2013-05-06
<u>Diablo</u>	EOL: 2013-05-06
<u>Cactus</u>	Deprecated
<u>Bexar</u>	Deprecated
<u>Austin</u>	Deprecated

OpenStack Automated installation options

Red Hat

- RDO Install proof of concept on single node, extend to more nodes later
- TripleO Deploy a production cloud
- TryStack Play with OpenStack in a sandbox. Sandbox is provided as a cloud service

Ubuntu

- OpenStack Autopilot Canonical OpenStack installer for production and test environments
- BootStack Installation service by Canonical

SUSE

- SUSE OpenStack Cloud Admin
- Mirantis
 - Fuel Deployment and management tool for OpenStack
- Rackspace
 - Openstack-Ansible Ansible scripts and extensions for deploying production clouds

• • • •

HEIG-Cloud

Goal: Deploy a private OpenStack cloud at HEIG-VD for research and teaching

- Want to run clusters for Big Data analysis (Hadoop, Spark)
- Want to deploy a private PaaS (CloudFoundry)

• ...

- Hardware: 13 Dell PowerEdge servers
- Had previously installed Havanna
- In August 2015 started to install Kilo

Internal users

(C) 2016 HEIG-VD

Configuration management

- When the number of managed machines exceeds a handful, manual configuration becomes too cumbersome.
- Configuration management tools automate the installation and configuration of software.

Server

Server

Server

Server

Machine life cycle

System administrator

Configuration management Tools

- Some popular configuration management tools:
 - CFEngine
 - Started in 1993 by Mark Burgess at Oslo University
 - CFEngine 3 released 2009
 - Puppet
 - Started in 2005 by Luke Kanies
 - Written in Ruby, uses Ruby domain-specific language
 - Chef
 - Started in 2009 by Adam Jacob and people from Amazon
 - Written in Ruby and Erlang, uses Ruby domain-specific language
 - Ansible
 - Started in 2012 by Michael DeHaan
 - Written in Python

CFEngine

Configuration management

Client-server architecture (for example Puppet)

Managed machines must be prepared by installing Puppet agent.

Configuration management

Serverless architecture (Ansible)

No special software must be installed on managed machines. No agents need to run. Uses existing Python interpreter and SSH.

Installing OpenStack with Ansible

- Unfortunately the installation procedure changes significantly with each new release of OpenStack
- Difficult to re-use Ansible scripts for previous versions
 - Developed new scripts from scratch

UDUNEU®		heig-vd • spark-project •										🐣 brunoric.britocar 👻			
Project	^ Ir	stances													
Compute	_					Insta	ance Name	Filter	F	ilter	nstance × Terminate Insta	ances More Actions -			
Overview	N	lastana Nama	Income Name			Kan Bala			Tech Barres Otata		The share excited				
Instance	s	Instance Name	Image Name	IP Address	Size	Key Pair	Status	Availability Zone	lask	Power State	Time since created	Actions			
Volume	s	spark-hdfs-master	-	192.168.1.167 Floating IPs:	m1.spark	bbo_key	Active	nova	None	Running	1 week, 3 days	Create Snapshot -			
Image	s			10.192.76.35											
Access & Securit	У	spark-slave_14	-	192.168.1.163	m1.spark	bbo_key	Active	nova	None	Running	3 months, 1 week	Create Snapshot -			
Network	-	spark-slave_13	-	192.168.1.162	m1.spark	bbo_key	Active	nova	None	Running	3 months, 1 week	Create Snapshot -			
Admin	-	spark-slave 12	_	192.168.1.161	m1 spark	bbo key	Active	nova	None	Running	3 months 1 week	Create Snanshot			
Identity	~	Spark-slave_12					10.192.76.3	mopark	bbo_kby	7101110	hora	Hono		o monalo, i wook	
	C	spark-slave_11	-	192.168.1.51 Floating IPs: 10.192.76.4	m1.spark	bbo_key	Active	nova	None	Running	3 months, 3 weeks	Create Snapshot -			
	C	spark-slave_9	-	192.168.1.49	m1.spark	bbo_key	Active	nova	None	Running	3 months, 3 weeks	Create Snapshot -			
		spark-slave_8	-	192.168.1.48	m1.spark	bbo_key	Active	nova	None	Running	3 months, 3 weeks	Create Snapshot -			
		spark-slave_7	-	192.168.1.47	m1.spark	bbo_key	Active	nova	None	Running	3 months, 3 weeks	Create Snapshot -			
		spark-slave_6	-	192.168.1.46	m1.spark	bbo_key	Active	nova	None	Running	3 months, 3 weeks	Create Snapshot -			

Multi-domain Keystone

- Keystone performs authentication and authorization of users.
- For authentication the user population can be divided into different domains.
 - Cloud resources in different domains are completely separated from each other.
 - Each domain can be configured differently.
 - Authentication can be delegated to a backend, for example an LDAP server.

- Multiple domains are available in Keystone v3 API
 - Not all OpenStack projects support the v3 API, or they support it only partially!

Multi-domain Keystone

ubuntu [@] Openstack Dashboard	💷 h	eig-vd
Log In	D	on
User Name		
Password		Nam
۲		heig
Domain		Defa
	Displa	iying 2 i
Sign In		

🗐 heig-vd • spark-project 👻

Domains

	Name	Description
	heig-vd	HEIG-VD domain.
	Default	Owns users and tenants (i.e. projects) available on Identity API v2.
Display	ying 2 items	

Troubleshooting tools Elasticsearch + LogStash + Kibana (ELK)

- Elasticsearch Search server based on Lucene
- Logstash General-purpose log management tool to gather logs from multiple sources, process/parse them to a required format and push them to multiple outputs
- Kibana Data visualization plug-in for Elasticsearch

Source: Amit Balode, http://balodeamit.blogspot.ch/2014/12/elk-elasticsearch-logstash-and-kibana.html

Monitoring Ganglia

- Ganglia is a scalable distributed monitoring system for clusters
- Components:
 - gmond Monitorig daemon installed on every server to be monitored
 - gmetad Daemon on the master node that collects data from all the gmond daemons
 - RDDtool (Roundrobin database tool)
 Creates a database with circular buffer
 - gweb Web-based user interface

Source: Matt Massie - Monitoring with Ganglia - O'Reilly Media

Grid > iict_cloud > --Choose a Node ᅌ

Overview of iict_cloud @ 2015-12-21 15:08

Grid > iict_cloud > controller

Thank you for your time

heig-vd

MARCEL GRAE

Dr.-Ing.

Professeur

INSTITUT DES TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION (IICT)

Haute École d'Ingénierie et de Gestion du Canton de Vaud Route de Cheseaux 1 - CP 521 - 1401 Yverdon-les-Bains

Prof.: +41 24 557 27 70 marcel.graf@heig-vd.ch - www.heig-vd.ch

> Hes.so Haute Ecole Spécialisée de Suisse occidentale

BRUNO BRITO CARVALHO

Ing. HES Collaborateur scientifique

INSTITUT DES TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION (IICT)

Haute École d'Ingénierie et de Gestion du Canton de Vaud Route de Cheseaux 1 - CP 521 - 1401 Yverdon-les-Bains

bruno.britocarvalho@heig-vd.ch www.heig-vd.ch

Hes.so Haute Ecole Spécialisée de Suisse occidentale

More information at the HEIG-Cloud blog at http://heig-cloud.github.io/